Скажите, какого это — ощущать себя обманутым, покинутым, преданным теми, кому больше всего доверял? Как справиться с этой пожирающей изнутри экзистенциальной бездной? Только не надо говорить, что вам такое не известно, так как до сих пор личная жизнь была образцовой — дело вовсе не в этом. Предателя нужно искать не в воспоминаниях и выцветших телефонных книгах, а в наших статьях. И этот предатель — мы. В прошлый раз, говоря о степенях, мы сознательно, с циничным и холодным расчётом умолчали о целом типе степеней, без которого разобраться в полном курсе математики вряд ли получится.
Пора остепениться
По мере изложения минувших статей (взять хотя бы совсем свежую) нам всё чаще и чаще встречаются ситуации, где один элемент умножается сам на себя несколько раз. Не то чтобы мы были против, пока дело не выходит за рамки это ещё терпеть можно, но как со всем этим справляться, если таких умножений будут десятки и даже сотни? Неужели ленивые математики никак не упростили себе жизнь на этот случай? Конечно же, упростили, введя понятие степени. Выглядит всё это следующим образом:
Ступени счастья
Понравилось о всяких теоремах про треугольники читать? Нет, ну правда, скажите, понравилось? Как-то не чувствуется восторженного единодушия. Хорошо, давайте вот ещё один пример того, насколько треугольники могут упростить жизнь, полную научных изысканий. Всего один, и если уж это не подействует, то дальше будем писать только про квадраты и окружности.
Разгоняться начнём, как водится, слегка-слегка. Засел в памяти пример о формуле Гаусса? Ну там, где мы считали сумму первых натуральных чисел, в итоге всё представив как площадь прямоугольника? Решение было изящным, хотя далеко не единственным. Если не заметили, то в математике вообще множество, целые десятки, сотни, если не тысячи, способов доказать то или иное утверждение. Большинство из них сводятся к чудовищному числу однообразных и грустных преобразований и группировок, и лишь некоторые жемчужины сияют своей интуитивностью.
Война клонов
В масштабной, основательной, брызжущей знаниями предыдущей статье про площади было замечено, что наше знакомство с фигурами только началось. В частности, сказали мы и про то, что одной из самой интересных фигур из всего списка является треугольник — в очередной раз скажите спасибо великим грекам и тысячам безымянных палочек, использованных для черчения на песке.
Сейчас мы остановимся на одном из самых интересных и знаменитых “треугольных” свойств , чья популярность, в отличие от сомнительного успеха иных музыкальных исполнителей, вполне оправдана, а не есть результат скоординированных усилий по PR продвижению и хитрого маркетинга звукозаписывающих лейблов. Говорить будем про теорему Пифагора (угадайте, кто её доказал?).
Атака по площади
Несмотря на все попытки разбавить изложение шуточками и рисунками, сам собой напрашивается печальный вывод — вскоре всё превратится в сплошную стену из символов, знаков и многострадальных скобочек. В какой-то момент формул станет так много, что привычной жизни, полной радости, интересных знакомств и заслуженного досуга, придётся сказать “пока”, ведь теперь всё свободное время будут занимать одни только закорючки и операции с ними (чтобы получить новые, более совершенные закорючки). Постараемся если не прервать, то хотя бы отсрочить наступление этой мрачной эпохи, обратившись к другому разделу математики, о котором мы до сих пор молчали.
Тайный язык древних
Стремительно вываливающийся поток скучнейшей информации грозит полным замешательством. Чтобы не потеряться во всех этих числах, множествах и операциях, следует периодически возвращаться к уже пройденным основам, переводить дух и набираться сил для новых путешествий. К тому же может оказаться, что оставленный позади материал вовсе не так прост, как изначально думалось. Математика, как и любая мыслительная деятельность вообще, хороша именно своей последовательностью — мы начинаем с очень простого набора фактов и утверждений, постепенно дополняя их новыми и новыми деталями. Однако каркас базовых идей при этом никуда не девается.
Тревожный раскол
Если по каким-то причинам вы всё же решили изучить предыдущую, факультативную публикацию, то давайте потратим ещё пару мгновений и насладимся красотой представленных в ней решений. Не меньший пиетет вызывают и сопровождающие иллюстрации. Чего стоит хотя бы следующее произведение графического искусства:
Лестница власти
Ну как, чувствуется эффект от плавного вхождения в область практической математики? Теперь уже получится различные действия выполнять, примеры решать, да и у бочки с квасом летом можно спокойно занимать очередь — со сдачей не обманут. Прямо и хочется спросить: а к чему были все эти цветастые кубики и прочие детские заискивания? Формальная запись ведь обладает несравненным преимуществом, ей всё в любом случае и закончится, разве не так?
Оставайся целым
Основное желание, которое была призвана пробудить предшествующая статья, это выход за пределы, разрушение границ, создание новых возможностей и горизонтов. Мы тут не говорим о необходимости осуществления давно назревших политических перемен в России (привет, центр “Э”!), вы ничего такого не подумайте. Ограничиваемся исключительно числами, да и не числами вообще, а конкретными и достаточно простыми числовыми множествами, в рамках которых мы успели изучить “натуральное” множество .
Не всё так просто
Ведя неспешный разговор о натуральных числах, мы основное внимание обращали на то, как именно с ними проводятся всевозможные операции. А вот о свойствах самих чисел сказали мало. Дело в том, что математические множества далеки от идеалов анархической демократии, здесь элементы могут быть совершенно не равны между собой, а то и вовсе обладать исключительными, невиданными качествами. Именно ими может похвастаться подмножество простых чисел (prime numbers), входящее в .