Yearly Archives

24 Articles

Пускаем корни

Скажите, какого это — ощущать себя обманутым, покинутым, преданным теми, кому больше всего доверял? Как справиться с этой пожирающей изнутри экзистенциальной бездной? Только не надо говорить, что вам такое не известно, так как до сих пор личная жизнь была образцовой — дело вовсе не в этом. Предателя нужно искать не в воспоминаниях и выцветших телефонных книгах,  а в наших статьях. И этот предатель — мы. В прошлый раз, говоря о степенях, мы сознательно, с циничным и холодным расчётом умолчали о целом типе степеней, без которого разобраться в полном курсе математики вряд ли получится.

Read More

Пора остепениться

По мере изложения минувших статей (взять хотя бы совсем свежую) нам всё чаще и чаще встречаются ситуации, где один элемент умножается сам на себя несколько раз. Не то чтобы мы были против, пока дело не выходит за рамки a\cdot a\cdot a это ещё терпеть можно, но как со всем этим справляться, если таких умножений будут десятки и даже сотни? Неужели ленивые математики никак не упростили себе жизнь на этот случай? Конечно же, упростили, введя понятие степени. Выглядит всё это следующим образом:

    \[a^n\]

Read More

Ступени счастья

Понравилось о всяких теоремах про треугольники читать? Нет, ну правда, скажите, понравилось? Как-то не чувствуется восторженного единодушия. Хорошо, давайте вот ещё один пример того, насколько треугольники могут упростить жизнь, полную научных изысканий. Всего один, и если уж это не подействует, то дальше будем писать только про квадраты и окружности.

Разгоняться начнём, как водится, слегка-слегка. Засел в памяти пример о формуле Гаусса? Ну там, где мы считали сумму n первых натуральных чисел, в итоге всё представив как площадь прямоугольника? Решение было изящным, хотя далеко не единственным. Если не заметили, то в математике вообще множество, целые десятки, сотни, если не тысячи, способов доказать то или иное утверждение. Большинство из них сводятся к чудовищному числу однообразных и грустных преобразований и группировок, и лишь некоторые жемчужины сияют своей интуитивностью.

Read More

Война клонов

В масштабной, основательной, брызжущей знаниями предыдущей статье про площади было замечено, что наше знакомство с фигурами только началось. В частности, сказали мы и про то, что одной из самой интересных фигур из всего списка является треугольник — в очередной раз скажите спасибо великим грекам и тысячам безымянных палочек, использованных для черчения на песке.

Сейчас мы остановимся на одном из самых интересных и знаменитых “треугольных” свойств , чья популярность, в отличие от сомнительного успеха иных музыкальных исполнителей, вполне оправдана, а не есть результат скоординированных усилий по PR продвижению и хитрого маркетинга звукозаписывающих лейблов. Говорить будем про теорему Пифагора (угадайте, кто её доказал?).

Read More

Атака по площади

Несмотря на все попытки разбавить изложение шуточками и рисунками, сам собой напрашивается печальный вывод — вскоре всё превратится в сплошную стену из символов, знаков и многострадальных скобочек. В какой-то момент формул станет так много, что привычной жизни, полной радости, интересных знакомств и заслуженного досуга, придётся сказать “пока”, ведь теперь всё свободное время будут занимать одни только закорючки и операции с ними (чтобы получить новые, более совершенные закорючки). Постараемся если не прервать, то хотя бы отсрочить наступление этой мрачной эпохи, обратившись к другому разделу математики, о котором мы до сих пор молчали.
Read More

Тайный язык древних

Стремительно вываливающийся поток скучнейшей информации грозит полным замешательством. Чтобы не потеряться во всех этих числах, множествах и операциях, следует периодически возвращаться к уже пройденным основам, переводить дух и набираться сил для новых путешествий. К тому же может оказаться, что оставленный позади материал вовсе не так прост, как изначально думалось. Математика, как и любая мыслительная деятельность вообще, хороша именно своей последовательностью — мы начинаем с очень простого набора фактов и утверждений, постепенно дополняя их новыми и новыми деталями. Однако каркас базовых идей при этом никуда не девается.
Read More

Тревожный раскол

Если по каким-то причинам вы всё же решили изучить предыдущую, факультативную публикацию, то давайте потратим ещё пару мгновений и насладимся красотой представленных в ней решений. Не меньший пиетет вызывают и сопровождающие иллюстрации. Чего стоит хотя бы следующее произведение графического искусства:

Rendered by QuickLaTeX.com

Read More

Лестница власти

Ну как, чувствуется эффект от плавного вхождения в область практической математики? Теперь уже получится различные действия выполнять, примеры решать, да и у бочки с квасом летом можно спокойно занимать очередь — со сдачей не обманут. Прямо и хочется спросить: а к чему были все эти цветастые кубики и прочие детские заискивания? Формальная запись ведь обладает несравненным преимуществом, ей всё в любом случае и закончится, разве не так?

Read More

Оставайся целым

Основное желание, которое была призвана пробудить предшествующая статья, это выход за пределы, разрушение границ, создание новых возможностей и горизонтов. Мы тут не говорим о необходимости осуществления давно назревших политических перемен в России (привет, центр “Э”!), вы ничего такого не подумайте. Ограничиваемся исключительно числами, да и не числами вообще, а конкретными и достаточно простыми числовыми множествами, в рамках которых мы успели изучить “натуральное” множество \mathbb N.

Read More

Не всё так просто

Ведя неспешный разговор о натуральных числах, мы основное внимание обращали на то, как именно с ними проводятся всевозможные операции. А вот о свойствах самих чисел сказали мало. Дело в том, что математические множества далеки от идеалов анархической демократии, здесь элементы могут быть совершенно не равны между собой, а то и вовсе обладать исключительными, невиданными качествами. Именно ими может похвастаться подмножество простых чисел \mathbb P (prime numbers), входящее в \mathbb N.

Read More